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Estimating large-scale structures in wall
turbulence using linear models
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A dynamical systems approach is used to devise a linear estimation tool for channel
flow at a friction Reynolds number of Reτ = 1000. The estimator uses time-resolved
velocity measurements at a single wall-normal location to estimate the velocity field at
other wall-normal locations (the data coming from direct numerical simulations). The
estimation tool builds on the work of McKeon & Sharma (J. Fluid Mech., vol. 658,
2010, pp. 336–382) by using a Navier–Stokes-based linear model and treating any
nonlinear terms as unknown forcings to an otherwise linear system. In this way
nonlinearities are not ignored, but instead treated as an unknown model input. It
is shown that, while the linear estimator qualitatively reproduces large-scale flow
features, it tends to overpredict the amplitude of velocity fluctuations – particularly
for structures that are long in the streamwise direction and thin in the spanwise
direction. An alternative linear model is therefore formed in which a simple eddy
viscosity is used to model the influence of the small-scale turbulent fluctuations on
the large scales of interest. This modification improves the estimator performance
significantly. Importantly, as well as improving the performance of the estimator, the
linear model with eddy viscosity is also able to predict with reasonable accuracy
the range of wavenumber pairs and the range of wall-normal heights over which the
estimator will perform well.

Key words: turbulence control, turbulence modelling, turbulent flows

1. Introduction
The existence of coherent structure in wall-bounded turbulence has been recognized

for some time (Cantwell 1981; Robinson 1991; Smits, McKeon & Marusic 2011). In
more recent years there has been increasing interest in large-scale coherent features,
particularly at high Reynolds numbers (Kim & Adrian 1999; Adrian, Meinhart
& Tomkins 2000; Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007;
Hutchins & Marusic 2007a; Monty et al. 2007; Jiménez 2012). These large-scale
structures contribute significantly to the turbulent kinetic energy and the Reynolds
stresses in the outer region (Komminaho, Lundbladh & Johansson 1996; Tomkins &
Adrian 2005; Guala et al. 2006). Furthermore there is evidence that their presence
is felt near the wall through a modulation of the near-wall cycle (Abe, Kawamura
& Choi 2004; Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009). The
importance of these large-scale structures is therefore clear and motivates efforts
towards their estimation and control.

† Email address for correspondence: sillingworth@unimelb.edu.au
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Estimating large-scale structures using linear models 147

Meanwhile, in what started as a separate community, analysis of the linearized
Navier–Stokes equations has allowed (amongst other things) structure in shear flows
to be elucidated. In the earliest studies this analysis was performed for laminar shear
flows by considering the temporal development of small perturbations about the
laminar flow. Of particular significance was the realization that, even for stable flows,
perturbations can experience significant transient growth before ultimately decaying
(Gustavsson 1991; Schmid & Henningson 2001). This transient amplification is
explained by the non-normality of the Navier–Stokes equations in the presence of
shear (Trefethen et al. 1993; Farrell & Ioannou 1996). Related studies are typically
concerned with finding the initial condition leading to the largest possible transient
growth – that is, an initial value problem – which has been performed across a
number of canonical laminar shear flows (Butler & Farrell 1992; Reddy & Henningson
1993; Schmid & Henningson 1994; Andersson, Berggren & Henningson 1999). An
alternative approach has been to take an input–output point of view by looking at
the response of the linearized Navier–Stokes equations to an impulse (Jovanovic
& Bamieh 2001; Jovanovic 2004); to stochastic forcing (Farrell & Ioannou 1993;
Bamieh & Dahleh 2001; Jovanovic & Bamieh 2005); and to harmonic forcing
(Jovanovic 2004; Schmid 2007).

Linear analysis for fully developed turbulent shear flow – although able to claim
a relatively long history (Malkus 1956; Reynolds & Tiederman 1967; Reynolds &
Hussain 1972) – has to date received less attention than its laminar counterpart. In
recent years, however, there has been a renewed interest in linear models for turbulent
shear flows, spurred on in part by mounting evidence that linear mechanisms play an
important role even here. In a manner analogous to the laminar case, the linearized
Navier–Stokes equations (now linearized about the mean flow) have been studied in a
transient growth setting (del Álamo & Jiménez 2006; Cossu, Pujals & Depardon 2009;
Pujals et al. 2009) and in an input–output setting (Hwang & Cossu 2010a,b; Willis,
Hwang & Cossu 2010). All of these studies follow the early work of Reynolds &
Tiederman (1967) by augmenting the kinematic viscosity with an eddy viscosity to
model the effect of the smallest scales on the large, coherent motions of interest.

In related but separate work, linear mechanisms in fully developed turbulent
shear flows have also been studied in recent years using a resolvent-based approach
(McKeon & Sharma 2010; McKeon, Sharma & Jacobi 2013). This approach proceeds
by essentially performing a Reynolds decomposition of the Navier–Stokes equations
and then, in a novel development, treating any terms nonlinear in the perturbations as
unknown forcings to an otherwise linear system. The decomposition is exact and thus
no linearization is performed. Put another way, no terms are discarded, the nonlinear
terms instead being absorbed into the unknown forcing. A resolvent analysis is then
used to extract structure in the linear operator. Importantly, the analysis is able to
reproduce pertinent features of fully developed turbulent shear flows (Moarref et al.
2013, 2014; Sharma & McKeon 2013).

This paper investigates model-based estimation of channel flow at a friction
Reynolds number of Reτ = 1000. To do so we use the linear modelling approach
of McKeon & Sharma (2010) (described in § 2) by treating any nonlinear terms
as unknown forcings to an otherwise linear system. We will see in § 3 that this
point of view can be naturally framed as an optimal linear estimation problem.
While following closely the development of McKeon & Sharma (2010), the work
also shares similarities with a number of other previous studies (Bamieh & Dahleh
2001; Jovanovic & Bamieh 2005; Zare, Jovanovic & Georgiou 2017). What all of
these studies share in common is that they all focus on the linear dynamics of the
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148 S. J. Illingworth, J. P. Monty and I. Marusic

Navier–Stokes equations; and that they all do so using an input–output point of view.
The estimator uses time-resolved velocity information at a single wall-normal location
to estimate the velocity field at other wall-normal locations. (The data coming from
direct numerical simulations.) We focus specifically on estimating the largest scales.
This is motivated not only by their importance at high Reynolds numbers as described
above, but also by our expectation that they are the scales that will show the greatest
coherence across wall-normal locations, and therefore represent the most promising
candidates for any estimation scheme. We will see that, for these largest scales,
the estimator performance is improved by including an eddy viscosity in the linear
operator.

Linear estimation has been applied to wall-bounded flows at laminar Reynolds
numbers (Hœpffner et al. 2005; Jones et al. 2011) and at very low turbulent Reynolds
numbers (Chevalier et al. 2006). The contribution of this work is to apply similar
tools to fully developed turbulence at a relatively high Reynolds number. The work
is important and timely for two reasons. First for modelling: if a linear estimation
scheme succeeds, then this is further evidence of the importance of linear mechanisms.
More specifically if the largest scales are well estimated by a linear model, then
this provides compelling evidence that they are driven at least in part by a linear
mechanism. Second, for flow estimation and control: success with a linear model alone
– the tools for which are well developed – would bode well for the estimation and
control of large-scale structures in turbulent shear flows at high Reynolds numbers.

2. Linear model
We consider fully developed turbulent flow in a channel at Reτ = 1000. The

streamwise, spanwise and wall-normal directions are denoted by x, y and z; and the
corresponding velocity components by u, v and w. The Reynolds number Reτ is based
on the channel half-height h, kinematic viscosity ν and friction velocity uτ =

√
τw/ρ,

where τw is the wall shear stress and ρ is the density. Thus velocities are normalized
by uτ ; spatial variables by h; time by h/uτ ; and pressure by ρu2

τ . Following this
non-dimensionalization, the channel half-height is unity so that z ∈ [0, 2]. We will
use this non-dimensionalization throughout, meaning (for example) that u can be
taken to mean ũ/uτ (where ũ is dimensional); (kx, ky) (the streamwise and spanwise
wavenumbers) can be taken to mean (k̃xh, k̃yh); (λx, λy) (the streamwise and spanwise
wavelengths) can be taken to mean (λ̃x/h, λ̃y/h); and so on. Spatial variables will
receive a + superscript when normalized by the viscous length scale, e.g. z+= z̃uτ/ν.

The linear model is obtained by performing a Reynolds decomposition of the
velocity field; substituting this into the non-dimensional Navier–Stokes equations; and
subtracting the mean equations to arrive at

∂u
∂t
=−(U · ∇)u− (u · ∇)U−∇p+ Re−1

τ ∇
2u+ d, ∇ · u= 0, (2.1)

where U is the mean velocity profile and u represents turbulent fluctuations about the
mean. Following McKeon & Sharma (2010), any nonlinear terms in (2.1) are treated
as a forcing d to an otherwise linear system, the forcing given by d =−(u · ∇)u+
(u · ∇)u. Nonlinear effects thus manifest themselves in two ways: through their role
in setting the mean velocity profile U; and through their forcing of the linear operator.

For the mean velocity profile U= (U(z),0,0) we use the Cess (1958) approximation
for the turbulent eddy viscosity (Reynolds & Hussain 1972):

νT(z)=
ν

2

(
1+

κ2Re2
τ

9
(2z− z2)2(3− 4z+ z2)2

[
1− exp

(
−Reτ z

A

)]2
)1/2

+
ν

2
, (2.2)
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Estimating large-scale structures using linear models 149

where νT(z) is the total viscosity (i.e. including the kinematic viscosity). As in
previous studies we take κ = 0.426 and A= 25.4, which we note were optimized for
Reτ = 2003 (del Álamo & Jiménez 2006; Pujals et al. 2009; Moarref et al. 2013).
The mean velocity profile U is then given by integrating Reτ (1− z)ν/νT(z).

2.1. State-space description
We now want to bring the linear model (2.1) into state-space form – doing so will
allow us to use standard tools from dynamics and control to design an estimator in § 3.
This is achieved by taking Fourier transforms in the homogeneous directions (x, y);
transforming into Orr–Sommerfeld Squire form; and discretizing in the wall-normal
direction (z) using Chebyshev collocation. In this way we arrive at a state-space model
governing the wall-normal velocity ŵ and the wall-normal vorticity η̂ in Fourier space
at a single wavenumber pair (kx, ky):

ẋ(t)= Ax(t)+ Bd(t), (2.3a)
y(t)= Cx(t), (2.3b)

where x =
[
ŵ η̂

]T; y =
[
û v̂ ŵ

]T; and d =
[
d̂x d̂y d̂z

]T
represents all nonlinear terms

(see (2.1)), which we treat as an unknown disturbance in all of the following. The
matrices A, B and C are defined in appendix A. Equation (2.3) is in standard state-
space form, which we will now use for estimator design.

3. Linear estimation
Our ultimate goal is to use limited measurements to estimate a fluid flow at other

locations. A common way to do this in the fluid mechanics community is to use
linear stochastic estimation (Adrian & Moin 1988). Here we take a different approach
by using the linear models just described, together with tools from optimal control,
to design an optimal estimator. (We will define in what sense it is optimal in the
following.)

Consider a linear state-space model of the form

ẋ(t)= Ax(t)+ Bd(t), (3.1a)
y(t)= Cyx(t)+ n(t), (3.1b)

z(t)= Czx(t), (3.1c)

which is of the same form as (2.3) but with two additions. First, there are now
two outputs: the measurements y and the quantities to be estimated z. (Each of
these can be written as a linear combination of the state x using matrices Cy and
Cz, as described in more detail in appendix A.) Second, the measurements y are
contaminated by sensor noise n. If the state-space model (3.1) has n states, p
disturbances, q measurements and r estimated quantities, then the state-space matrices
have the following dimensions: A ∈Cn×n; B ∈Cn×p; Cy ∈Cq×n; and Cz ∈Cr×n.

Thus there are two unknown exogenous inputs in (3.1). The first is sensor noise,
n, which contaminates measurements so that the measured value, y, differs from the
true value. The second is disturbances d that, by their nature, are unknown. (In the
present case these correspond to the terms quadratic in u – see § 2.) Taking Laplace
transforms of (3.1), setting n= 0 (for the moment), and rearranging, we arrive at the
transfer function P(s), defined such that

[
z(s) y(s)

]T
= P(s)d(s):

P(s)=
[

Pz(s)
Py(s)

]
=

[
Cz
Cy

]
(sI − A)−1B, (3.2)
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150 S. J. Illingworth, J. P. Monty and I. Marusic

where s is the Laplace variable. We note in passing that, by setting s= iω, we recover
the frequency response – more commonly referred to as the resolvent – from the
unknown forcing d to the velocity field at the estimation (z) and measurement (y)
locations.

Having defined the relevant transfer functions, we can now consider the overall
block diagram for the estimation problem:

(3.3)

In general the transfer function P(s) is weighted (the reasons for which are given in
appendix B), but here we instead use the unweighted P(s) to simplify the discussion.
The weighted plant is introduced as part of the more detailed description given in
appendix B. The estimator F (s) (to be designed) receives as its input the measured
quantities y (contaminated by noise n), and provides as its output an estimate of the
quantities of interest z. We label this estimate ze. The estimation error e is then e=
z− ze. We can now define an overall transfer function G(s), as indicated by the dashed
box in (3.3). G receives as its input the unknown disturbances d and the sensor noise
n; and provides as its output the estimation error e. G(s) is thus defined such that its
input is the unknown (and unwanted) exogenous inputs; and its output is the quantity
that we want to keep small (the estimation error). The estimation problem can now be
stated as follows: given P, design F such that G is small. If this is achieved then the
estimation error should remain small even in the presence of the unknown disturbances
d and sensor noise n.

In order to design the filter F we must first define a suitable measure of the size
of G. For this we use the 2-norm, defined for a transfer function as

‖G‖2 =

√
1

2π

∫
∞

−∞

Trace[G∗(iω)G(iω)] dω=

√
1

2π

∫
∞

−∞

∑
i

σ 2
i (iω) dω, (3.4)

where σi(iω) are the singular values of G at frequency ω and represent a generalization
of gain when there are many inputs and many outputs. The 2-norm therefore
represents an average gain over all frequencies and all directions and it is this
quantity that is minimized in the filter design. (More specifically, the 2-norm in (3.4)
is defined such that it corresponds to a grid-independent energy-norm.) F can now
be formed using standard tools by first transforming the block diagram (3.3) into a
more standard form as described in appendix B.

One final remark. A common way to design the filter described in this section is to
use Kalman filtering. The framework chosen here is often referred to as H2 control, of
which Kalman filtering is a special case. We have chosen this framework – despite the
fact that it is less standard – because it is both more intuitive and more general. For
more on estimator design in this setting see Seron, Braslavsky and Goodwin (2012).

4. DNS dataset
We require two sets of time-resolved velocity data: (i) the velocity field in the

measurement plane(s) which serves as the input for the linear estimator; and (ii) the
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Estimating large-scale structures using linear models 151

velocity field in the estimation plane(s) so that we can compare the estimate with the
truth. These data are taken from the Johns Hopkins Turbulence Database (Graham
et al. 2016). The direct numerical simulations (DNS) are performed in a channel
of size 8π × 3π × 2 using 2048 × 1536 × 512 nodes. The simulations solve the
incompressible Navier–Stokes equations using the pseudo-spectral (Fourier–Galerkin)
method in the wall-parallel planes and the seventh-order B-spline collocation method
in the wall-normal direction.

4.1. Spatial resolution
The smallest non-zero wavenumbers resolved are |kx|=1/4 in the streamwise direction
and |ky| = 2/3 in the spanwise direction. The largest wavenumbers resolved are |kx| =

256 and |ky| = 512. Since our interest is in estimating the largest structures, only
wavenumbers satisfying |kx| 6 8, |ky| 6 64/3 will be included – for both the DNS
data and the linear estimator – in the results to follow in § 5. This corresponds to
λx > 0.785 and λy > 0.295 (recall that the channel half-height is unity) or λ+x > 785
and λ+y > 295. We will see in the results to follow that these are sensible choices.

4.2. Temporal resolution
Time-resolved data are available for approximately one channel flow-through time
(tmaxUc/8π= 1.15, where Uc is the mean velocity at the channel centre). While this
means that some results are not fully converged, we will see in § 5 that it is sufficient
to characterize the performance of the linear estimators. Data have been acquired at a
temporal resolution of 1t= 0.0016 (1tUc= 0.0362; 1t+= 1.60). This corresponds to
every twenty-fifth DNS time step. It is important that the time step is small enough to
resolve the frequencies of interest at a given (kx, ky) pair. This can be checked using
Taylor’s hypothesis. If Taylor’s hypothesis is approximately true, then a structure
with streamwise wavenumber kx measured at a wall-normal height z will give rise to
a temporal frequency ω = kxU(z) as it convects downstream. The highest frequency
that we anticipate will therefore be for the largest streamwise wavenumber (|kx| = 8)
and the largest mean velocity (U(z+ = 297)= 19.3) to give a maximum frequency of
|ω| = 154.4. We therefore have access to approximately 25 samples per period for
this highest frequency.

5. Results

We now apply the model-based estimator described in § 3 to the channel flow
DNS described in § 4. Recall that the models (and therefore estimators) are formed
in Fourier space at a given (kx, ky) pair. The wavenumber spacing (1kx = 1/4,
1ky = 2/3) and the maximum wavenumbers considered (|kx| = 8, |ky| = 64/3) make
for 65 × 65 = 4225 wavenumber pairs in total. However, the real-valued data (in
physical space) mean that the results for (+kx, −ky) are equivalent to those for
(+kx, +ky), and so we only need consider non-negative spanwise wavenumbers ky > 0.
(Alternatively we could choose to include only non-negative streamwise wavenumbers,
kx > 0, provided that both positive and negative spanwise wavenumbers are included.)
This makes for 65× 33= 2145 wavenumber pairs. In the wall-normal direction we use
151 Chebyshev points, which is sufficient for the large scales of interest. Convergence
has been checked by doubling the number of Chebyshev points and ensuring that the
results do not change.
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5.1. Choice of measurement quantity
In all results to follow, the quantities measured (y in (3.3)) are all three velocity
components at z+ = 197. These measurements are clearly not as practical as a wall-
based measurement scheme; and furthermore, the exact choice of wall-normal location
may seem arbitrary. Therefore we first discuss and justify this choice before moving
on to the results obtained with it.

First concerning practicality: it would be more practical, of course, to measure some
wall-based quantity such as wall pressure or wall shear stress. But we argue that,
rather than jump straight to what is practical, it is more instructive in the present case
to start with something that is not practical but which is more direct (in the sense
that the quantity measured is a velocity, and the quantity estimated is also a velocity).
Indeed, suppose that we measure instead the wall shear stress – and use it to estimate
the velocity at some wall height – and suppose that we do not succeed. What can
we conclude? Is it because the linear model used for estimation is not suitable; or is
it because there is not enough coherence between what is measured (the wall shear
stress) and what is estimated (the velocity at some wall height)? In other words, with
more than one obstacle to success, it is difficult to isolate the one responsible for
failure. In this study we would therefore like to minimize the obstacles to failure (at
the cost of practicality) in order to make success with a linear model as likely as it
can be.

Having justified our choice of velocity as measurement, it remains to justify the
specific choice of wall height (at z+=197). This choice is based primarily on the work
of Hwang & Cossu (2010b), who find that the optimally amplified structures in fully
developed turbulent channel flow take the form of streamwise streaks. Significantly
for the present work, they also find that the streamwise velocity component of these
structures reaches its peak value at a wall height of approximately 0.2h from either
wall, corresponding to z+=200 in the present case. The measurement location of z+=
197 thus corresponds approximately to the wall height where the large-scale structures
(that we would like to estimate) are most energetic.

5.2. Estimator performance in physical space
We now look at the linear estimator’s performance in physical space. This is shown
in figure 1 where the estimate of the streamwise velocity perturbation at z+ = 101
is compared to the true (i.e. DNS) value at a single instant in time. (Movies of the
estimator performance are also provided at both z+ = 101 and z+ = 297.) We also
plot the time history of the streamwise velocity perturbation at a single point in the
plane. We make two observations on the results seen in figure 1. First, that the linear
estimator tends to overpredict the amplitude of the streamwise velocity perturbations.
Second, that this overprediction appears to be concentrated in structures that are long
in the streamwise direction and thin in the spanwise direction. We will investigate this
tendency more thoroughly in § 5.4 by moving into Fourier space. Before doing so,
however, we will first repeat the results of figure 1 using an alternative linear model
which includes in it a simple eddy viscosity model.

5.3. Including an eddy viscosity in the linear operator
An alternative linear model can be formed by first performing a triple decomposition
of the velocity field, ũ=U+u+u′, where U is again the mean velocity; u represents
a large-scale organized motion; and u′ represents small-scale turbulent fluctuations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

12
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

el
bo

ur
ne

 L
ib

ra
ry

, o
n 

16
 M

ar
 2

01
8 

at
 0

3:
42

:2
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.129
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Estimating large-scale structures using linear models 153

0

6

–6
10 200

x

y

y

u

(a)

(b)

(c)

FIGURE 1. (Colour online) Estimation of the streamwise velocity perturbation at z+= 101
using the linear model (2.1): (a) DNS data; and (b) linear estimate using measurements at
z+= 197; (c) time history at x=π/2, y=π/2 for the DNS data (——) and for the linear
estimate (– –). Sixty-five contour levels are shown from u=−3.5 (blue) to u=+3.5 (red).
Movies of the estimator performance are also provided at both z+ = 101 and z+ = 297.

Following previous work (Reynolds & Hussain 1972; del Álamo & Jiménez 2006;
Pujals et al. 2009; Hwang 2016) we provide a closure for terms quadratic in u′ using
a simple eddy viscosity model. In contrast to these previous studies, however, we
retain terms quadratic in u and treat them as unknown forcings as we did for (2.1).
In this way we obtain a linear model, augmented by an eddy viscosity, and forced by
the remaining nonlinear terms:

∂u
∂t
=−(U · ∇)u− (u · ∇)U−∇p+∇ ·

[νT

ν
(∇u+∇uT)

]
+ d, ∇ · u= 0, (5.1)

with d=−(u · ∇)u+ (u · ∇)u. (Notice that although the expression for d here is the
same as that for (2.1), the definition of u of which it is composed is different.) As
before the mean velocity U is provided as an input using (2.2). In addition, (2.2) is
also used to provide the total viscosity νT(z) which appears in (5.1). The state-space
form of (5.1) – the matrices for which are given in appendix A – allows the same
optimal estimator described in § 3 to be formed and applied. Results are shown in
figure 2, which follows the same template as figure 1. (The estimator performance at
z+ = 101 and at z+ = 297 are also provided as movies.) We see that the simple eddy
viscosity model leads to a significant improvement in the estimator performance.

5.4. Estimator performance in Fourier space
For convenience we will refer to the linear model (2.1) as LM1 and the linear model
(5.1) as LM2 in all of the results to follow. Having looked at estimation in physical
space, we now look at the two linear estimators’ performance in Fourier space at each
wavenumber pair considered (|kx|6 8, |ky|6 64/3). To do this we must first introduce
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FIGURE 2. (Colour online) Estimation of the streamwise velocity perturbation at z+= 101
using the linear model with eddy viscosity (5.1). Legend same as figure 1. Movies of the
estimator performance are also provided at both z+ = 101 and z+ = 297.

a measure of performance at a single wavenumber pair:

γ =
‖e‖2

‖z‖2
, (5.2)

with the 2-norm of a time series z(t) defined as ‖z‖2 = [
∫

z∗(t)z(t) dt]1/2. Therefore
γ is the 2-norm of the estimation error e normalized by the 2-norm of the velocity
field z that is being estimated. In order to achieve better convergence, we calculate
γ in each of the two halves of the channel and average over the two. The estimator
is initialized with a velocity field that is zero everywhere. (This is clearly seen in all
of the supplementary movies available at https://doi.org/10.1017/jfm.2018.129.) This
means that there is an initial transient in the estimation error. In order to minimize the
effect of this transient on γ , we therefore omit the earliest time steps when calculating
γ in (5.2). Specifically, the time period used is 0.242< t< 1.296 (or 5.47< t̃Uc/h<
29.34). This was chosen based on an estimate of the length of the initial transient by
looking at the evolution of the energy of the estimate (in physical space) with time.

Figure 3 plots γ as a function of wavenumber pair (kx, ky) for both linear estimators.
The colour scale has been chosen separately for the two estimators to accommodate
the largest γ that each of them sees (which is γmax = 8.37 for LM1 and γmax = 1.03
for LM2). Consistent with the results in physical space in figures 1 and 2, we see
that typical values of γ for LM1 are larger than those for LM2. We also see that, for
LM1, γ is largest for structures with |kx| ≈ 0 and |ky|' 5, i.e. structures that are long
in the streamwise direction and thin in the spanwise direction. This is consistent with
the results seen in physical space in figure 1. Figure 4(a,b) is a repeat of figure 3,
this time reducing the colour scale, γ ∈ [0, 0.7], for both estimators. This allows
us to better resolve the region over which the two estimators perform well. We see
that both estimators perform best for streamwise wavenumbers kx ≈ 0 and spanwise
wavenumbers |ky| / 5, with LM2 performing significantly better overall. A similar
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FIGURE 3. (Colour online) Normalized estimation error γ as a function of (kx, ky) for
(a) LM1 (2.1); and (b) LM2 (5.1). Note that (a) and (b) use different colour scales. The
value of γmax (see colour bar) is (a) γmax = 8.37 for LM1 and (b) γmax = 1.07 for LM2.
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FIGURE 4. (Colour online) (a,b) Normalized estimation error γ as a function of (kx, ky)
for (a) LM1; and (b) LM2. (c,d) Prediction of estimation error γpred for (c) LM1; and
(d) LM2. The same colour scale γ ∈ [0, 0.7] is used for all four plots.

analysis to that shown in figures 3 and 4 has also been performed using the correlation
coefficient (between the DNS data and linear estimate) in place of the normalized error
defined in (5.2). The conclusions drawn from this analysis are the same as those stated
above: that LM2 performs better overall than LM1; that the best performance (for both
models) is achieved for the largest structures; and that, for LM1, the performance is
worst for structures that are long in the streamwise direction and relatively thin in the
spanwise direction.

5.5. Estimator performance when applied to the linear model
This section is motivated by a question: Why do the linear estimators not perform
better than they do? Broadly there are three possible explanations for the differences
between the true velocity field and its estimate seen in figures 1 and 2.

(i) Linear mechanisms are not important (or not important enough).
(ii) Linear mechanisms are important but the linear model does not capture them.

(iii) Linear mechanisms are important; the linear model captures them; but there is
insufficient coherence between the measurement and estimation planes.
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The first two possibilities stem from the suitability of the linear model itself. The
third possibility could be considered more fundamental. We mean this in the sense
that if there is insufficient coherence between the measurement and estimation planes,
then no estimator could perform well – the underlying physics forbids it.

If the differences seen are due to a lack of coherence, then the linear model should
reproduce it. Therefore in this section, as well as designing the filter for the linear
model, we also apply it to the linear model. The DNS data are thus not needed at
all. We do this because we would like to know if the results seen in § 5.4 can be
reproduced using nothing but a linear model. To do this we require disturbances d to
drive the system. For the DNS results, d came from the terms quadratic in u (which
were present even if unknown by the estimator). In the present case we must provide
them ourselves. We do this by assuming the simplest model possible for d: random
forcing which is white in space and white in time. We also require sensor noise but,
since we expect it to be negligible for the DNS, we set n= 0. For this choice of d
and n, the 2-norm of the estimation error is given simply by ‖e‖2=‖Gd‖2, where Gd
is the portion of G in (3.3) corresponding to the transfer function from d to e. Since
we want to predict the normalized error (γ ), we must divide this by the 2-norm of z
(i.e. the velocity field being estimated), which is given by ‖z‖2=‖Pz‖2. The quantity
of interest is therefore

γpred =
‖Gd‖2

‖Pz‖2
, (5.3)

which is plotted as a function of (kx, ky) for both estimators in figure 4(c,d). The same
colour scale as figure 4(a,b) is used. We see that LM1 predicts good performance over
a wider range of (kx, ky) pairs than it achieves with the DNS data. For LM2 there is
good agreement between the performance it predicts and the performance it achieves.

5.6. Linking the estimator performance to existing results
We highlight here links with previous studies that have considered a linear model
with eddy viscosity. To do this we plot two quantities (for LM2 only) in figure 5.
The first is the prediction of the LM2 estimation error γpred as a function of ky
for kx = 0, kx = ±0.25 and kx = ±0.5. The second is the true estimation error γ
achieved in DNS where, in order to reduce scatter in the plot, we average γ across
all |kx| 6 0.5 for each value of ky. The average is therefore performed across five
realizations: kx = 0, kx =±0.25 and kx =±0.5. We also plot the results for each half
of the channel separately to give some idea of the scatter in the results. We see that
the spanwise wavenumber at which the predicted estimation error γpred attains its
minimum is in the range ky = 1.4–2.1 (specifically ky = 1.4 for kx = 0; ky = 1.9 for
kx=±0.25; and ky= 2.1 for kx=±0.5), which corresponds to λy= 3.0–4.5. This is in
reasonable agreement with the results achieved in DNS (notwithstanding the scatter
in the data) and provides an important link to existing results in the literature. Pujals
et al. (2009) look at optimal transient growth for a linear model with eddy viscosity
(LM2) over a range of Reynolds numbers, 500 6 Reτ 6 20 000. They find that, for
streamwise-constant structures (kx = 0), the maximum transient growth is attained for
a spanwise wavenumber of ky ≈ π/2 (λy ≈ 4.0) for all Reynolds numbers considered.
Hwang & Cossu (2010b), meanwhile, find the energy amplification achieved by
optimal harmonic and stochastic forcing for the same linear model (LM2) and over
the same range of Reynolds numbers (500 6 Reτ 6 20 000). For kx = 0 they find that
the most amplified structures have a spanwise wavenumber of ky ≈ 1.8 (λy ≈ 3.5). To
summarize, the structures that are best estimated by the linear estimator coincidence
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FIGURE 5. Prediction of the LM2 estimator performance γpred as a function of ky for
kx = 0 (——), kx = ±0.25 (– –) and kx = ±0.5 (– · –); and true estimator performance γ
averaged over all kx 6 |0.5| for the two halves of the channel (E,@).

well with the structures that (i) have the greatest potential for transient growth (Pujals
et al. 2009); and (ii) are most amplified in the stochastically forced and harmonically
forced settings (Hwang & Cossu 2010b).

5.7. Estimator performance across wall heights
We have looked at the estimator performance at z+ = 101 in §§ 5.2 and 5.3; and at
z+= 101 and z+= 297 in § 5.4. (Recall that measurements are taken at z+= 197.) We
now look at the estimator performance across a range of wall-normal heights, keeping
the measurement location at z+=197 throughout. To do this we follow the template of
figure 5 and plot two quantities, but this time as a function of wall height z+. The first
is the prediction of the LM2 estimation error, γpred, as a function of wall height for
kx= 0, kx=±0.25 and kx=±0.5. The second is the true estimation error γ achieved
in DNS. Like figure 5 we average γ across all |kx|60.5 for each wall height to reduce
scatter in the results; and like figure 5 we plot the results for each half of the channel
separately. These quantities are plotted in figure 6 for four values of the spanwise
wavenumber, ky = 2, 4, 6 and 8. As one would expect, the estimator performs best
for wall heights near z+ = 197, with the estimation error γ increasing monotonically
away from this location. We see good agreement between the predicted estimation
error and that achieved in DNS, particularly for ky = 4, 6 and 8 (with scatter in the
DNS results as before). For ky= 2 and wall heights towards the centre of the channel
we see that the estimator does not perform quite as well as predicted. Nevertheless
the true estimator performance for ky= 2 is competitive with that for ky= 4, 6 and 8.
The results of figure 6 provide useful information on the estimator performance with
wall height; and also provide further evidence that the linear model (5.1) is able to
reproduce important features of the estimation problem.

5.8. Discussion
It is important to stress that estimation has been performed only for the largest scales.
Specifically, and as stated in § 4, we have considered only wavenumbers satisfying
|kx| 6 8 and |ky| 6 64/3 (λx > 0.785 and λy > 0.295). The results of figure 4(b,d)
show that this choice makes sense since, for the wall-normal heights considered, these
are the only scales for which we expect the estimator to be successful. For these
largest scales the performance of the linear estimator is improved by including an

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

12
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

el
bo

ur
ne

 L
ib

ra
ry

, o
n 

16
 M

ar
 2

01
8 

at
 0

3:
42

:2
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.129
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


158 S. J. Illingworth, J. P. Monty and I. Marusic

(a) (b)

(d )

0

0.3

0.6

0.9

(c)

0

0.3

0.6

0.9

300 600 900 0 300 600 900

FIGURE 6. Prediction of the LM2 estimator performance γpred as a function of
wall-normal location z+ for kx = 0 (—), kx =±0.25 (– –) and kx =±0.5 (– · –); and true
estimator performance γ averaged over all kx 6 |0.5| for the two halves of the channel
(E,@). This is plotted for (a) ky = 2; (b) ky = 4; (c) ky = 6; and (d) ky = 8.

eddy viscosity in the linear model. This suggests that, for successful estimation, it
is important to model the influence of the small-scale turbulence on the large-scale
coherent motions of interest. Put another way, it is important to impose structure on
the feedback between the velocity field and the Reynolds stresses to which it gives
rise – and even a very simple model to impose this structure improves estimator
performance significantly.

For the smallest scales, in contrast, one would anticipate that the kinematic viscosity
alone is the most appropriate viscosity model, since here any eddy viscosity would
be accounting for the very scales one wishes to resolve. The question then naturally
arises as to what one should do for the intermediate scales. One option would be to
use a wavenumber-dependent eddy viscosity. In the present linear modelling context
the recent work of Zare et al. (2017) is particularly relevant, which provides a data-
driven refinement of a Navier–Stokes-based linear model to account for second-order
statistics. It would be interesting to use this approach in the linear estimation problem
considered here.

We finish this section by considering the performance (and predicted performance)
of the LM2-based estimator for large values of |kx| and |ky| (i.e. small structures).
We observe that the normalized estimation error, γ , is largest for the largest values
of |kx| and for the largest values of |ky|, i.e. structures that are small in at least
one of the two homogeneous directions. This is clearly seen in figure 4, where
γ is largest when |kx| is large or |ky| is large; in figure 5, where γ increases for
increasing ky; and in figure 6 where, for individual (kx, ky) pairs, γ increases as
the estimation plane is placed further away from the measurement plane (i.e. as the
structures become smaller relative to this separation distance). One can understand
this physically in the following way. When the size of the structure to be estimated
becomes too small (relative to the distance between the estimation and measurement
planes), the estimation task becomes very difficult. This is not only because the
linear operator corresponding to (5.1) shows smaller amplification for these smaller
structures (equivalently, nonlinear mechanisms are more important), but also because
any such structure is presumably more localized in the wall-normal direction.
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6. Conclusions

Using a linear, Navier–Stokes-based model of channel flow at Reτ = 1000 it is
possible to estimate the largest scales with reasonable accuracy when a simple eddy
viscosity model is included. For the flow under consideration, then, linear mechanisms
are sufficiently important to the large scales that a linear model is able to model and
estimate them with reasonable accuracy. Importantly, the linear model with eddy
viscosity not only improves the performance of the estimator, but is also able to
predict the range of wavenumber pairs (figure 4) and the range of wall heights
(figure 6) over which the estimator should perform well. This is compelling evidence
that the model captures the underlying physics of the large scales, as discussed
in § 5.5. The structures that are best estimated coincide well with the structures
that show the greatest potential for amplification in both the transient growth and
externally forced settings. The results suggest that there is merit in further efforts
towards estimation and control of large-scale structures in wall-bounded turbulent
flows.
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Appendix A. State-space form of the linear models

The state-space representation (2.3) of the linear model (2.1) is

d
dt

[
ŵ
η̂

]
=

[
∆−1LOS 0
−ikyU′ LSQ

] [
ŵ
η̂

]
+

[
−ikx∆

−1D −iky∆
−1D −k2∆−1

iky −ikx 0

] d̂x

d̂y

d̂z

 , (A 1a)

û
v̂
ŵ

= 1
k2

ikxD −iky
ikyD ikx

k2 0

 [ŵ
η̂

]
, (A 1b)

with boundary conditions ŵ(t) = ∂zŵ(t) = η̂(t) = 0 at the two walls. Here D and ′

represent differentiation in the wall-normal direction; k2
= k2

x + k2
y ; ∆=D2

− k2 is the
Laplacian; and LOS and LSQ are the Orr–Sommerfeld and Squire operators:

LOS =−ikxU∆+ ikxU′′ + Re−1
τ ∆

2, (A 2a)
LSQ =−ikxU + Re−1

τ ∆. (A 2b)

The state-space representation of the linear model with eddy viscosity (5.1) is also
given by (A 1) but with modifications to the Orr–Sommerfeld and Squire operators:

LOS =−ikxU∆+ ikxU′′ + νT∆
2
+ 2ν ′TD∆+ ν ′′T(D2

+ k2), (A 3a)
LSQ =−ikxU + νT∆+ ν

′

TD. (A 3b)
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A.1. Output matrices Cy and Cz

Since Chebyshev discretization is used in the wall-normal direction (see § 2.1),
(A 1b) gives the three velocity components at the Chebyshev collocation points. In
general these do not coincide with the wall-normal locations of interest. Therefore
a modification of (A 1b) must be made so that the state-space matrices Cy (for
measurement locations) and Cz (for estimation locations) introduced in (3.1) can be
formed for any wall height of interest. This is achieved by implementing barycentric
Lagrange interpolation (Berrut & Trefethen 2004) as a matrix operation. This matrix
premultiplies the matrix in (A 1b) to give the three velocity components at the wall
heights of interest. In this way the matrices Cy and Cz in (3.1) can be formed for
any measurement locations and for any estimation locations of interest.

Appendix B. Estimator design
Here we give further details on how the filter F in § 3 is formed. We first take

the block diagram in (3.3) and put it in the standard form shown below (Doyle et al.
1989):

(B 1)

with Pz and Py as defined in (3.2). (Note that G(s) in (B 1) is the same as G(s)
in (3.3), although G(s) in (3.3) was not weighted to simplify the discussion there.)
Weighting matrices W d and W n are included in P̃. These can be used to prioritize
certain input directions and frequency ranges (for both disturbances and noise) that
one wishes to guard against; and to rescale disturbances d and noise n to reflect
their relative sizes. We set W d = I and W n = αnI . (Recall from § 3 that the 2-norm
(3.4) to be minimized is defined such that it corresponds to a grid-independent energy-
norm.) This amounts to a design choice to guard against all input directions and all
frequencies equally for both disturbances and noise. The parameter αn allows one to
set the expected size of the sensor noise relative to disturbances. We expect sensor
noise in the direct numerical simulations to be negligible, but we must set αn > 0 so
that the estimator design procedure is well-posed. We therefore set αn such that the
variance of the sensor noise is 1 % of the variance of the measurements. With the
overall transfer function P̃ formed, we are now in a position to design the filter F (s).
Recall from § 3 that the design task is: given P (and therefore P̃ in (B 1)), design
F such that G is small. More specifically, F is designed such that the 2-norm of G
in (B 1) is minimized. This is achieved in practice by using P̃ in state-space form to
solve a pair of algebraic Riccati equations. For more details on the solution procedure
for F (s) see Doyle et al. (1989) or Zhou & Doyle (1998, chap. 13).
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